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Combinatorics of lattice paths with and without spikes
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Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain

Received 17 August 1999

Abstract. We derive a series of results on random walks on ad-dimensional hypercubic lattice
(lattice paths). We introduce the notions of terse and simple paths corresponding to the path having
no backtracking parts (spikes). These paths label equivalence classes which allow a rearrangement
of the sum over paths. The basic combinatorial quantities of this construction are given. These
formulae are useful when performing strong-coupling (hopping parameter) expansions of lattice
models. Some applications are described.

1. Introduction

The strong-coupling expansion is a useful analytical technique to study lattice models. In
the context of lattice gauge theories it has been used since the early days of the subject to
investigate the behaviour of the system far from the continuum limit [1]. This technique is
related to the high-temperature expansions of classical statistical mechanics. In the case of
matter fields (continuous spin variables) with nearest-neighbour interactions the technique
involves ahopping parameter expansiongiving rise to a representation of the free energy
and the propagators (correlation functions) in terms of random walks (see [2] and references
therein). In its application to gauge theories the contribution of each random walk includes the
corresponding Wilson loop. Since the early calculations of this type [3] the special behaviour of
backtrackingpaths was recognized. Backtracking occurs when the walk makes two consecutive
opposite steps: the first in one direction and the next one in the reverse direction. Part of
their special character is related to the fact that the expectation value of a Wilson loop is
suppressed like an exponential of its area. At infinitely strong coupling and largeN this leaves
loops which arepure backtrackers. Actually, for unitary gauge fields the contribution of the
backtracking part of a path is independent of the gauge fields themselves. The problem of
summing over this type of path becomes independent of the expectation value of gauge fields
and is a pure combinatorial problem. The problem was avoided, nevertheless, in some of
the mentioned lattice QCD strong-coupling expansions [3, 4] by setting the Wilson parameter
r equal to 1. This kills backtracking paths from quark propagators. Other strong-coupling
calculations were performed atr 6= 1 by means of the effective potential method [5], in
which the connection to the backtracking-path resummation problem is hidden. The problem
was nevertheless addressed by several authors [6], and led to formulae with which one could
reproduce the effective potential strong-coupling results. Recently, motivated by the strong-
coupling expansion of supersymmetric Yang–Mills theory [7], we fell back into the problem.
Unaware of the previous work on the subject†, we arrived independently at a derivation of the

† We thank J Smit, A Sokal and G M̈unster for pointing out to us some of the old papers on the subject.
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main formulae. In this paper we present the result of our investigation. Our paper contains
a mathematically rigorous derivation of some of the previously known formulae, which are
often disperse in the literature. Furthermore, using the same techniques, we derive some new
combinatorial expressions which are useful in different contexts. Some new applications of
the formulae are also presented. We believe that the applications of lattice path resummation
are far from being exhausted. In addition, from the point of view of the combinatorial problem
itself, there are some extensions which are useful in other situations [8] which are yet to be
solved. We hope that our techniques can be a good starting point for attacking these problems.

This paper is written in a self-contained form. In the next section we introduce the basic
notation and definitions. Since there is no standard precise terminology on the subject, we
prefer to define and name all of the basic conceptual notions which are relevant for our work.
Hence, we will refer to random walks aslattice pathsand to backtracking parts asspikes.
Section 2 contains the main results on resummation over pure backtracking parts. Section 3
gives the expression of a matrix generating function for paths without spikes (terse paths). This
expression is useful for strong-coupling expansions of lattice gauge theories. In section 4, we
consider some modifications which are useful when considering closed paths. In this case
the notion of asimplepath turns out to be useful. Formulae similar to those given in the
previous two sections are given for the case of simple paths. Finally, in section 5 we give
a few applications which exemplify the way in which the previous results enter in physical
expressions within strong-coupling expansions. This includes the pure spike contribution to
the free energy of a Gaussian model and the mesonic effective action. This is the only surviving
part if the fields are coupled to a randomU(N) gauge field at largeN [8]. The reader who
is not interested in proofs can jump directly to the last section. Our main results are given in
formulae (14), (18), (20), (32)–(34), (39)–(41) and (44).

2. Reducing paths

In this section we will introduce the basic notation and definitions. We will be working in
arbitrary spacetime dimensiond. Vector indicesµgo from 0 tod−1. We will need to introduce
an index setI with 2d elements. For every spacetime directionµ there are two elementsµ and
µ̄. They correspond to the two senses associated to each direction (forward and backward).
Now consider our spacetime latticeL ≡ Zd . We might associate to any elementα in I a lattice
vectorV (α) as follows:

µ −→ V (µ) ≡ e(µ) µ̄ −→ V (µ̄) ≡ −e(µ)

wheree(µ) is the unit vector in theµ-direction. Given one elementα ∈ I the element̄α denotes
the oppositely oriented one (¯̄µ = µ).

Now we proceed to give a few definitions.

Definition 1. A lattice pathof lengthL is an elementγ ≡ (n, Eα) ∈ L× IL. The pointn ∈ L
is theorigin of the path, andEα is thepath sequence, specifying the steps to take to describe the
path.

The endpointof a path(n, α1, . . . , αL) is given by the lattice pointm = n + V (Eα) =
n +

∑L
i=1V (αi). We can now introduce the following nomenclature for the set of paths.

Let SL(n) be the space of all paths with originn and lengthL. S(n) labels the set of all paths
with originn and any length. We might also fix the origin and endpoint and writeSL(n→ m).

The total number of paths of lengthL is easy to count:N(L) = (2d)L. For lengthL = 0
we will consider that there is a unique path with origin inn, which we will call thepath of zero
length. To any pathγ ≡ (n, Eα) of lengthL, there corresponds a path called itsreverse pathof
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equal length and labelledγ−1 ≡ (m, Eβ). The origin of the reverse pathm is the endpoint of
the original path and vice versa. The path sequence is the reversely ordered one (βi = ᾱL−i+1).
We will also introduce a path composition operation. Given a pathγ ≡ (n, Eα)whose endpoint
ism, and another pathγ ′ ≡ (m, Eβ), we can construct the composed pathγ ◦ γ ′ ≡ (n, Eα, Eβ).

Now we will give some more definitions.

Definition 2. A pathγ ≡ (n, α1, . . . , αL) hasspikesif there exists one integeri (1 6 i 6
(L − 1)) such thatαi+1 = ᾱi . In the opposite case one says that the path isterseor hasno
spikes. The set of all paths without spikes (terse) of lengthL and originn is labelledS̄L(n)
(S̄L(n→ m) if the endpoint is fixed tom).

It is not difficult to obtainN̄(L): the number of elements of̄SL(n). Its value is 2d(2d −1)L−1

for L > 1. The path of zero length is tersēN(0) = 1.
Now we will classify the set of paths into subsets labelled by a terse path. Let us first

present the results.

• There exists a projectionπ : S(n→ m) −→ S̄(n→ m) ⊂ S(n→ m) such that to every
pathγ it associates a terse pathπ(γ ), called itsreduced path. If the length ofγ isL, then
the length ofπ(γ ) isL− 2p, for some integerp.

Definition 3. If π(γ ) is the path of length zero, thenγ is said to be apure spikepath.

The construction ofπ(γ ) proceeds iteratively. If the pathγ = (n, Eα) is terse, then
π(γ ) = γ . Otherwise, one can start to scan the sequence of indicesi in increasing order, until
one finds a value ofi such thatαi+1 = ᾱi . This by hypothesis must hold for somei. Then, one
can eliminate the elementsi andi + 1 from the sequence, thus defining a new path of length
L − 2. Then, one can apply the procedure once again to the resulting path. In this way, one
must proceed iteratively until the iteration terminates. This must necessarily happen since the
length of the original pathL is finite. The iteration can terminate in two ways. Most frequently,
one would reach, at some stage of the iterative procedure, a path without spikes. Then this is
preciselyπ(γ ). In some cases, the iteration proceeds until there are no more elements left in
the sequenceEα. In this case we would say that the corresponding reduced path is the path of
zero length andγ is a pure spike.

The setsπ−1(γ̂ ) will play an important role in our construction. Our main interest is to
determine the numbersN(γ̂ , p): the number of paths of length 2p + L̄ whose reduced path is
γ̂ (whose length is̄L). For the construction we will need to introduce two groups of operations
on the sets of paths:

φ : SL(n) −→ SL−1(n) (1)

such that forγ = (n, α1, . . . , αL), we haveφ(γ ) = (n, α1, . . . , αL−1),

φα : SL(n) −→ SL+1(n). (2)

Forγ = (n, α1, . . . , αL) andα ∈ I , we haveφα(γ ) = (n, α1, . . . , αL, α).
What we need to know is what is the interplay between these operations and the projection

π . Let us consider a pathγ = (n, α1, . . . , αL)whose reduced path isπ(γ ) = (n, β1, . . . , βL̄).
We are interested in the reduced pathπ(φα(γ )). By the iterative definition ofπ , we see
that after some iterations we would end up with a pathφα(π(γ )). Now there can be two
cases: ifᾱ 6= βL̄ this path is terse and henceπ(φα(γ )) = (n, β1, . . . , βL̄, α) = φα(π(γ ));
for the special casēα = βL̄, one must still apply one reduction step and the result is
π(φβL̄(γ )) = (n, β1, . . . , βL̄−1) = φ(π(γ )).
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Now we studyπ(φ(γ )). There are again two cases: ifαL = βL̄ the result is
(n, β1, . . . , βL̄−1) = φ(π(γ )); in the rest of the cases we have(n, β1, . . . , βL̄, ᾱL) =
φᾱL(π(γ )). These results can be proven in a similar way as forφα.

Now we will make use of the previous results. Consider a terse pathγ̂ = (n, β1, . . . , βL̄)

of non-zero length̄L, and consider the setS(γ̂ , p) of all pathsγ of lengthL = L̄ + 2p, with
p > 1 an integer, whose reduced path isγ̂ . Then we can conclude:

• The applicationφ induces a mapping fromS(γ̂ , p) intoS(φ(γ̂ ), p)∪α 6=βL̄ S(φᾱ(γ̂ ), p−
1), which is bijective.
• Henceforth, the number of pathsN(γ̂ , p) in S(γ̂ , p) satisfies

N(γ̂ , p) = N(φ(γ̂ ), p) +
∑
α 6=βL̄

N(φᾱ(γ̂ ), p − 1).

Actually, the numberN(γ̂ , p) does not depend on the pathγ̂ but only on its length̄L. We
thus conclude

N(L̄, p) = N(L̄− 1, p) + (2d − 1)N(L̄ + 1, p − 1). (3)

• For a pure spike path(n, α1, . . . , αL), we might applyφ and produce a path of length
L− 1 with reduced path(n, ᾱL). This is also bijective and leads to

N(0, p) = 2dN(1, p − 1). (4)

The proof of the previous statements is as follows. The bijectivity can be shown by the
existence of an inverse transformation. This is basicallyφα with α chosen appropriately. To
prove thatN(γ̂ , p) only depends on the length can be done by induction. Prove directly by
construction that the statement is true for paths of short length (it is easy to solve the problem
up toL = 4, for example). Then one assumes that the statement is verified up to length
L = L̄ + 2p (for anyp). Then one can use formulae (3) and (4) to show that the statement is
true for paths of lengthL + 1. Notice that if the right-hand side does not depend on the actual
terse paths but only on its lengths, and since these lengths only depend on the length of the
reduced patĥγ of the left-hand side, the result follows.

By repeated application of the relations equation (3) and (4), together with the initial
conditionN(L̄, 0) = 1, one can obtain all theN(L̄, p) values. To exploit these relations we
will introduce the following generating functions:

F(L̄, z) =
∞∑
p=0

zpN(L̄, p) (5)

G(y, z) =
∞∑
L̄=0

F(L̄, z) yL̄. (6)

Multiplying relation (3) by the appropriate powers ofz andy and summing overp andL̄, one
finds

G(y, z)− F(0, z) = yG(y, z) +
(2d − 1)z

y
(G(y, z)− F(0, z)− yF(1, z)) (7)

and from it, one can writeG in terms ofF :

G(y, z) = 1

(y(1− y)− (2d − 1)z)

((
y

2d
− (2d − 1)z

)
F(0, z) + y

2d − 1

d

)
. (8)

Notice that the zeros of the denominator in the previous expression can give rise to singularities,
even for small values ofzandy, unless the numerator vanishes at these zeros. This must actually
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happen sinceG andF can be shown to be analytic in a neighbourhood ofy = z = 0 (this
follows fromN(L̄, p) < (2d)L̄+2p). This allows one to determineF(0, z):

F(0, z) = 2d − 1

d

1

1 + [d/(d − 1)]
√

1− 4(2d − 1)z
. (9)

Now plugging this expression into (8) we obtain the formula forG(y, z).
The expressions can be simplified with a suitable change of variables. Let us introduce

the variableξ :

ξ(z) = 1
2

(
1−

√
1− 4(2d − 1)z

)
(10)

with inverse

z(ξ) = ξ(1− ξ)
2d − 1

. (11)

Then one can conclude:

F(0, z(ξ)) = 1

1− 2dξ/(2d − 1)
(12)

G(y, z(ξ)) = − (2d − 1)(1− ξ)
2d − 1− 2dξ

1

y + ξ − 1
. (13)

Notice that the only dependence ony sits in the last denominator. It is now fairly simple to
obtainF(L̄, z) by picking the relevant power ofy in the expansion. One finds

F(L̄, z(ξ)) = 1

(1− (2d/(2d − 1))ξ)

1

(1− ξ)L̄ . (14)

The last formula is the main one of this section. From it one can obtain the numbersN(L̄, p),
by differentiation or Cauchy integration. This we will do later.

Before that, as a check of our formulae, one can compute the number of paths of lengthL

as a sum over the number of terse paths times the number of paths of lengthL having a given
terse path as a reduced path:

(2d)L = N(L) =
[L/2]∑
p=0

N̄(L− 2p)N(L− 2p, p). (15)

To check all formulae at the same time we can multiply the expression byzL and sum overL.
We obtain

1

1− 2dz
= F(0, z2) +

∞∑
L̄=1

zL̄F (L̄, z2)2d(2d − 1)L̄−1

= 1

(1− (2d/(2d − 1))ξ(z2))

(
1 +

2dz

1− ξ(z2)− (2d − 1)z

)
= 1− ξ(z2) + z

(1− (2d/(2d − 1))ξ(z2))(1− ξ(z2)− (2d − 1)z)
. (16)

For the second identity of the previous formula we have resummed a geometric series.
Finally, to prove that the right-hand side of the previous equation coincides with the left-
hand side, one must simply manipulate algebraically the expression and use the relation
ξ(z2)(1− ξ(z2)) = (2d − 1)z2.

We conclude this section by extracting the numbersN(L, p) themselves. This can be
done by employing the expression of the generating function (14), and making a contour
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integral in the complex plane ofz around the origin, and using Cauchy’s theorem. It is more
practical to change variables fromz to ξ in the integral. Notice that for|z| small enough, the
contour inξ also encircles the origin and the functionF(L, z(ξ)) has no singularities inside.
The resulting integrand is a product of negative powers ofξ and of(1− ξ), times the factor
1/(1− (2dξ/(2d − 1))) coming from (14). If one expands this denominator in powers ofξ ,
it is not hard to show that

N(L, p) =
p∑
j=0

(2d)j (2d − 1)p−j
(L + 2p − j − 1)!

(p − j)!(L + p)!
(L + j). (17)

We see that the resulting expression is a polynomial ind of degreep. To obtain the coefficients
of the different powers ofd, one could expand the power of(2d−1) in powers ofd and rearrange
the summation. The method can be carried out but is fairly lengthy and complicated. A short
cut to arrive at the same final expression is to multiply and divide equation (17) byj !. Then
one replaces the factorsj ! and (L + 2p − j − 1)! by their standard integral representation
(that of Euler’s gamma function) and performs the sum overj . The expression is then given
as a double integral over two variablesα andβ going from 0 to∞. Now one can perform the
standard trick in computing Feynman integrals by changing variables toλ ≡ (α + β) and the
Feynman parameterx ≡ α/λ. The integration overλ can be performed and we arrive at

N(L, p) =
(
L + 2p

p

)∫ 1

0
dx xL+p−1(2d − x)p−1(L(2d − x) + 2dp(1− x))

=
(
L + 2p

p

)
p∑
s=0

(2d)s(−1)p−s

(L + 2p − s)

(
p

s

)(
L +

s

L + 2p − s + 1

)
. (18)

The first equality in the previous expression is a Feynman parameter integral representation of
the numbersN(L, p). The second one is a representation as a polynomial ind, and it can be
obtained easily from the other. We have given the expression forN(L, p) for completeness,
though in actual applications it is more useful to work with the generating functionF(L, z).

3. Summing over reduced paths

In this section we will compute a matrix generating function for the set of terse pathsS̄L(n).
This generating function turns out to be useful in applications to strong-coupling expansions
of lattice models. Let us introduce a collection of matricesAα for α ∈ I . The interesting
quantity to study is

T (A) =
∞∑
L=0

∑
(n,Eα)∈S̄L(n)

Aα1 . . .AαL . (19)

We will first computeT (A) for matricesA satisfyingAαAᾱ = λI (i.e. a multiple of the
identity). This condition is satisfied in some of the most important applications of the formula.
At the end of the section we will give the more general formulae.

To facilitate the reading of the following for those who are mostly interested in the result,
we will begin by giving the answer:

T (A) = (1− λ)(1 + (2d − 1)λ− Ã)−1 (20)

with

Ã =
∑
α∈I

Aα. (21)
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The conditions on the matricesA for which the previous expression applies can be read out from
it. The eigenvalues of̃Amust be small enough for the inverse matrix entering in equation (20)
to exist. In the following paragraphs we will give the proof of this result.

We begin by considering the set of all terse paths, with origin inn, lengthL > 1 and
ending with stepα: S̄αL(n). Applying a similar definition to equation (19) to this set we obtain

Tα(L,A) =
∑

γ∈S̄αL(n)
Aα1 · · ·Aα. (22)

Now, clearly the pathφ(γ ) is also a terse path and has lengthL − 1, but it cannot end with
stepᾱ. Hence,

Tα(L + 1,A) =
∑
β 6=ᾱ
Tβ(L,A)Aα. (23)

The formula is valid forL > 1.
Now from it we will derive an equation forTα(A) ≡

∑∞
L=1 Tα(L,A). Then our main

quantityT (A) is given byI +
∑

α∈I Tα(A). Summing equation (23) overL one obtains

Tα(A) = (T (A)− Tᾱ(A))Aα. (24)

GivenT (A), these are coupled equations for the indicesα andᾱ. We then write them as a
single vector equation:

(Tα(A), Tᾱ(A))H = T (A) (Aα,Aᾱ) (25)

whereH is an invertible matrix. This matrix and its inverse are given by the formulae

H =
(

I Aᾱ

Aα I

)
(26)

H−1 = 1

(1− λ)

(
I −Aᾱ

−Aα I

)
. (27)

Then, for fixedT (A), one can solve forTα(A), obtaining

Tα(A) = T (A)
(1− λ)(Aα − λ). (28)

Finally, summing both sides of the equation overα we find

T (A)− I = T (A)
(1− λ)(Ã− 2dλ). (29)

From this equation one can solve forT (A) obtaining equation (20).
We can now, as in the previous section, check the formula by using it in deriving a known

result. Consider the sum over all pathsγ = (n, Eα) of the ordered product of the matricesAα.
Since this is a geometric series it is easily resummed to(I − Ã)−1. Now this result has to be
reobtained by splitting the sum over paths into a sum over terse paths and a sum over paths
whose reduced path is a given terse path. In this way one is making use of the results of the last
section and of this section at the same time. The last summation can be performed in terms of
the generating function studied in the last section. One has

∞∑
L=0

∑
(n,Eα)∈S̄L(n)

Aα1 · · ·AαLF (L, λ). (30)



1024 A Gonźalez-Arroyo

Now, given the form ofF(L, λ) given in expression (14), one recognizes the structure given
in equation (19) withAα rescaled. We find

1

(1− (2d/(2d − 1))ξ(λ))
T (A/(1− ξ(λ))). (31)

Now using our expression forT (A) (equation (20)) and the relation betweenξ(λ) andλ
(equation (10)) one obtains the known result.

Now, as announced at the beginning of the section we will give the result without imposing
the conditionAαAᾱ = λI. It is not difficult by following the same steps as before to show
that in the general case we have

T (A) = (1− B̃)−1 (32)

Tα(A) = T (A) (Aα −AᾱAα) (I −AᾱAα)
−1 (33)

where

B̃ =
∑
α

(Aα −AᾱAα) (I −AᾱAα)
−1. (34)

The previously given formula (20) follows as a special case from this one.
To conclude this section, we comment that, using the above formulae, one can derive

matrix generating functions for the sum of terse paths with fixed origin and endpoint. For that
purpose one simply has to multiplyAα by a phase eiϕα . For the reverse direction̄α one has the
complex conjugate phase (ϕᾱ = −ϕα), so that the conditionAαAᾱ = λI is respected. With a
suitable integration over the phasesϕµ one can restrict the sum over terse paths to those having
a fixed endpoint. For example, if one wants to evaluate the contribution toT (A) from paths
whose origin isn and endpoint ism one can simply write∏

µ

(∫ 2π

0

dϕµ
2π

eiϕµ(nµ−mµ)
)
T (eiϕαAα). (35)

4. Closed and simple paths

In this section we will look at closed paths: a path such that its origin and endpoint coincide.
One frequently encounters situations in which closed paths play an important role, such as in
computing the free energy or the fermion determinant. In those cases, for every such path one
has to evaluate a trace. For that purpose, the notion of terse paths is somehow insufficient. We
would like to single out those paths(n, Eα) for which the last stepαL differs fromᾱ1. We will
call those paths simple. Let us now give the definition more precisely.

Definition 4. A pathγ = (n, Eα) of lengthL is simple, if it is terse (without spikes) and in
addition one hasαL 6= ᾱ1.

Simple paths can be open or closed, however, their usefulness appears normally when they are
closed. The set of simple paths of lengthL and origin inn is labelledS̃L(n). The setS̃0(n) is
given by the path of zero length.

By a similar procedure to the one followed in section 1, one can associate to any path
γ a given simple path̃π(γ ). To constructπ̃(γ ) one starts by obtaining the reduced path
(π(γ ) = γ̂ ≡ (n, Eβ)) associated toγ . Let us consider that its length isL and its origin isn. If
this terse path is simple, then this is preciselyπ̃(γ ). If not, it is due toβL being equal toβ̄1.
Hence, we eliminate the first and last steps in the sequence (β1 andβL). The resulting path is
terse and has lengthL − 2. Notice, however, that its origin is nown + V (β1), and notn. If
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the path is simple, then it coincides withπ̃(γ ), otherwise one has to repeat the procedure once
more. Eventually, one reaches a simple path, which could be just a path of zero length.

Our first goal is to develop similar counting rules for simple paths to those obtained in
section 2 for terse paths. In particular, we are interested in computing the numbersÑ(γ̃ , p):
the number of pathsγ of lengthl + 2p whose associated simple path isπ̃(γ ) = γ̃ (of length
l). The generating function of these numbers is

F̃ (γ̃ , z) =
∞∑
p=0

zpÑ(γ̃ , p). (36)

In what follows we will compute this generating function and the numbersÑ(γ̃ , p).
The procedure that we will employ is to relate these numbers withN(l, p). For that purpose

consider a pathγ with π̃(γ ) = γ̃ ≡ (m, Eα) and consider its reduced pathπ(γ ) ≡ (n, Eβ).
It is clear from the description of the construction ofπ̃(γ ) that the pathπ(γ ) must be the
composition of three paths:

π(γ ) = s ◦ γ̃ ◦ s−1.

The paths ≡ (n, Eρ) is a terse path of lengthp′ (0 6 p′ 6 p) going fromn tom. If the path
γ̃ has lengthl thenρp′ 6= ᾱ1, αl . This must hold, since the compositions ◦ γ̃ ◦ s−1 must be
terse. Conversely all pathsγ havingπ(γ ) = s ◦ γ̃ ◦ s−1 haveγ̃ as its associated simple path.
Hence, all one needs to do is to count for each case ofπ(γ ) the number of pathsγ of length
l + 2p. The main formula is

Ñ(γ̃ , p) = N(l, p) +
p∑

p′=1

N(l + 2p′, p − p′) (2d − 2)(2d − 1)p
′−1. (37)

The quantity(2d − 2)(2d − 1)p
′−1 counts the number of acceptable terse pathss of length

p′ going from any pointn to m. The word acceptable refers to the conditionρp′ 6= ᾱ1, αl .
The previous formula (37) is valid forl andp strictly positive. If any of the two is zero then
Ñ = N .

A first conclusion from formula (37) is that̃N(γ̃ , p) only depends on the lengthl of the
simple pathγ̃ . If we multiply both sides of the equation byzp and sum overp, we find (for
l > 0)

F̃ (l, z) = F(l, z) +
∞∑
p′=1

(2d − 2)(2d − 1)p
′−1zp

′
. (38)

Now using the form ofF(l, z) one obtains

F̃ (l, z) = 1

1− 2ξ(z)

1

(1− ξ(z))l . (39)

This formula is valid forl > 0. This is complemented bỹF(0, z) = F(0, z). To extract from
F̃ (l, z) the numbers̃N(l, p), one proceeds as before by Cauchy integration. The calculation is
now much simpler since(1−2ξ(z)) is up to a constant the Jacobian for the change of variables
from z to ξ . Finally, one obtains (l > 0)

Ñ(l, p) = (2d − 1)p(2p + l)!

p!(p + l)!
. (40)
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In some applications, one is interested in a slight variant of the generating functionF̃ (l, z).
Its definition and final expression is given by

F̃ ′(l, z) ≡
∞∑
p=0

1

l + 2p
Ñ(l, p)zp = 1

l(1− ξ(z))l . (41)

The last expression, valid for positivel, could be obtained after some work by integration of
F̃ (l, z). The 1

l+2p in the definition ofF̃ ′ occurs naturally when the sum of closed paths is
the result of a fermionic or bosonic determinant. We complement this result with the one for
l = 0:

F̃ ′(0, z) ≡
∞∑
p=0

1

2p
N(0, p)zp = d log(1− ξ(z)) + (d − 1) log

(
1− 2d

2d − 1
ξ(z)

)
. (42)

The remaining part of this section is dedicated to the evaluation of sums over simple paths.
The basic quantity is

T̃ (A) =
∞∑
L̄=0

∑
(n,Eα)∈S̃L(n)

Aα1 · · ·AαL̄
. (43)

whereS̃L(n) is the set of all simple paths with origin inn and lengthL. In short, what we want
is the generalization of the quantity defined in equation (19) but restricted to simple closed
paths. Similarly to what we did in section 3, we will first present the result, and then give the
derivation. We obtain

T̃ (A) = 1

(1− λ)(2λ(d − 1) + (1 +λ2(2d − 1))H −
∑
α∈I

AαHAᾱ) (44)

with

H = (1 + (2d − 1)λ− Ã)−1 (45)

whereAαAᾱ = λI as in section 3.
The derivation follows a similar track to the one employed forT (A). Our first goal is the

calculation of the quantityTαα′(L,A) given by

Tαα′(L,A) =
∑

(n,Eα)∈S̃αα′L (n)

Aα1 · · ·AαL (46)

whereS̃αα′L (n) is the set of all simple paths(n, Eα) of lengthL (L > 2) and origin inn such that
α1 = α andαL = α′. The main iteration equation allowing the evaluation of this quantity is

Tαα′(L + 2,A) =
∑

α 6=β̄;α′ 6=β̄ ′
AαTββ ′(L,A)Aα′ . (47)

The sum ofTαα′(L,A) overL ranging from 2 to∞ is denoted byTαα′(A). An equation
for this quantity follows from summing both sides of equation (47) overL. After similar
manipulations as those of section 3, one finds

Tαα′(A) = AαTᾱᾱ′(A)Aα′ + Sαα′ (48)

with

Sαα′ = −δαᾱ′λ + λδαα′Aα + (1 +λ)AαHAα′ + λ(HAα′ +AαH)
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whereH is the quantity defined in equation (45). Finally, combining the equation forTαα′(A)
and forTᾱᾱ′(A), one can solve forTαα′(A):

Tαα′(A) = 1

(1− λ)(λ(−δαᾱ′ + δαα′Aα −HAα′ −AαH) +AαHAα′ + λ
2H). (49)

The previous quantity can be related toT̃ (A) as follows:

T̃ (A) = I + Ã +
∑
α 6=ᾱ′
Tαα′(A). (50)

Using this result in combination with equation (49) one obtains the final formula (44). One
can again check the validity of the expression by using it in reobtaining a known result. We
leave this to the reader. We recall that in the definition ofT̃ (A) one sums over all simple
paths, closed or open. Restricting oneself to closed paths can be done with the same technique
explained at the end of the previous section.

5. Discussion

In this section we will exemplify how to apply the previous results to some physical problems.
We consider a lattice model involving continuous spin variables with nearest-neighbour
interactions. These lattice fields can be real or complex valued or Grassman variables if they
describe fermions. To apply the path representation we need a quadratic action or Hamiltonian
in these fields. For example, for complex fields one has∑

a,b,n,m

φa(n)†φb(m)Mab(n,m). (51)

The indicesn,m label lattice points and the indicesa, b are internal. The matrixM will
depend on other fields. For instance, in many cases constraints or non-quadratic terms in the
lattice action can be rewritten as a quadratic (Gaussian) Hamiltonian with the aid of auxiliary
fields. Then, one can integrate out these complex fields (φa(n)) using the Gaussian integration
formulae. The two quantities entering the final expressions are the determinant ofM (detM)
and the inverse ofM. Now, the nearest-neighbour character of our matrix manifests itself in
that we can write (after an adequate rescaling of the fields if necessary)

M = I −
∑
α∈I

1α (52)

where the matrix1α can be written as

1ab
α (n,m) = Aab

α (n) δmn+V (α). (53)

It only produces transitions between a lattice pointn and its neighbour in theα direction
n+V (α). It is this form of the matrixM that allows a random walk (lattice path) representation
of the determinant or the inverse ofM. Our formulae allow a rearrangement of this sum over
paths into a sum over simple closed paths or terse paths, respectively. This is feasible whenever

1α1ᾱ = 3 (54)

with3 a matrix which is independent of the spacetime point. This occurs naturally whenever
the matrix1α, although dependent on the spacetime point, involves unitary link fields as in
U(N) or ZN gauge theories. We will restrict to the case when3 is a multiple of the identity
λI.



1028 A Gonźalez-Arroyo

Now if we denote byA(γ ) the ordered product of the matricesAα(n) along the pathγ ,
we can write

log(det(M))/V =
(
−d log(1− ξ(λ)) + (d − 1) log

(
1− 2d

2d − 1
ξ(λ)

))
Tr(I)

+
∞∑
l=1

1

l

∑
γ̃∈S̃l (n→n)

Tr(A(γ̃ ))

(1− ξ)l (55)

whereV is the lattice volume andξ(λ) is defined in equation (10). To arrive at the previous
equation, we have rearranged as usual the sum over paths into a sum over simple paths, and
used the results of the previous sections. The term proportional to Tr(I), equal toF̃ ′(0, λ),
gives the contribution of pure spike paths. In some theories, likeU(N) gauge theories at
strong coupling in the large-N limit with either bosonic or fermionic spin fields in either the
fundamental or adjoint representation, this term turns out to be the only surviving one [8].
Thus, up to a multiplicative constant depending on the type of field,F̃ ′(0, λ) (equation (42))
gives the free energy per unit volume in that limit. We suggest that in other theories, the
rearrangement into simple paths could be an effective method to perform the summation over
paths.

Now as an additional application, let us compute the pure spike contribution to themesonic
effective potential. Let us add to the action (51) a mesonic source term:

−
∑
n,a,b

φa(n)†φb(n) J ab(n) (56)

whereJ (n) acts as the source of local field bilinears (mesons). Integrating over the Gaussian
fieldsφ we obtain the connected generating functionalW(J):

W(J) ≡ log(Z(J )/Z(0)) =
∞∑
k=1

1

k
Tr((M−1J )k) (57)

where the trace includes a summation over lattice points. Each factor ofM−1 can be expanded
into a sum over paths (random walks). The pure spike contributionW0(J ) is that in which the
overall path obtained within each trace is a pure spike path. Again this contribution would be
the leading one if the matricesAα(n) entering equation (51) involve randomU(N) fields at
largeN . In the subsequent expressions only the remaining part of theAα would enter, which
we will take to be constant in what follows. In order to implement the restriction to pure spike
paths, it is convenient to express the propagatorsM−1 as a sum over terse paths:

(M−1(n,m))ab = 1

(1− (2d/(2d − 1))ξ)

∞∑
l=0

∑
γ̂∈S̄l (n→m)

(A(γ̂ ))ab

(1− ξ)l . (58)

We then obtain forW0(J ):

W0(J ) =
∞∑
k=1

1

k

∑
x1,...,xk∈L

∑
γ̂1∈S̄(x1→x2)

· · ·
∑

γ̂k∈S̄(xk→x1)

×Tr(J ′(x1)A
′(γ̂1)J

′(x2) · · ·A′(γ̂k))2(γ̂1 ◦ γ̂2 . . . ◦ γ̂k) (59)

where2(γ ) is 1 if γ is a pure spike path and zero otherwise, and the rescaled quantitiesA′, J ′

are given by

A′α =
Aα

(1− ξ(λ)) (60)

J ′(n) = J (n)

(1− (2d/(2d − 1))ξ(λ))
. (61)
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We see that the net effect of replacing the sum over paths by a sum over terse paths is precisely
this rescaling, as follows from our results of section 2. The first two terms ofW0(J ) are

W0(J ) =
∑
x∈L

Tr(J ′(x)) + 1
2

∑
x1,x2∈L

J
′
(x1)P(x1→ x2)J

′(x2) + · · · . (62)

The linear term inJ ′ is trivial since the only path that contributes is the path of zero length.
The constraint2(γ̂1 ◦ γ̂2) for the quadratic term implies thatγ̂2 must be the reverse path ofγ̂1.
The resummation over terse paths can be done with the use of the formulae of section 3. One
obtains the following explicit expression of the propagatorP(x1→ x2):

P(x1→ x2) =
∏
µ

(∫ 2π

0

dϕµ
2π

eiϕµ(x1−x2)µ

)
(1− λ′) (1− (2d − 1)λ′ −B)−1 (63)

where

λ′ = λ2

(1− ξ(λ))4 (64)

B =
∑
α∈I

eiϕαA′α ⊗ (A′ᾱ)t . (65)

These expressions were used in our recent paper onN = 1 SUSY Yang–Mills [7]. In
formula (62)J ′(n) has to be looked at as a column vector on which the matrixP acts. Then,
J
′
(x1) is the row vector whose elements are the transpose ofJ ′.

Finally, we will address the calculation of the cubic term inW0(J ). For that purpose we
have to solve the constraint2(γ̂1 ◦ γ̂2 ◦ γ̂3). In the generic case, this can be solved as follows:

γ̂1 = sα2 ◦
(
s
β

3

)−1
(66)

γ̂2 = sβ3 ◦
(
s
γ

1

)−1
(67)

γ̂3 = sγ1 ◦
(
sα2
)−1

(68)

wheresγ1 ∈ S̄γ is a terse path ending with a step in theγ direction, and similar definitions for
s2 ands3. Furthermore, one must haveα 6= β 6= γ 6= α. The exceptional cases occur when
any of the pathssi is a path of zero length. It is clear that the summation over the pathssi can
be done with the aid of the formulae of section 3. The best way to express the result is in terms
of the mean mesonic field8ab(x):

8(x) =
∑
x ′∈L
P(x → x ′)J ′(x ′). (69)

Then the cubic term inW0(J ) becomes∑
x∈L

(
1
3 Tr

(
83(x)

)−∑
α∈I

Tr
(
8(x)82

α(x)
)− 2

∑
α 6=β

Tr
(
8β(x)8

2
α(x)

)
− 2

3

∑
α 6=β 6=γ 6=α

Tr(8α(x)8β(x)8γ (x))

)
(70)

where

8α(x) = 1

1− λ′ (A
′
α8(x + V (α))A′ᾱ − λ′8(x)). (71)

This coincides up to a normalization factor with the cubic term in the effective action00(8),
which is the Legendre transform ofW0(J ). Following a similar procedure one can compute
quartic and higher terms in00(8).



1030 A Gonźalez-Arroyo
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