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Abstract. We derive a series of results on random walks ehdimensional hypercubic lattice

(lattice paths). We introduce the notions of terse and simple paths corresponding to the path having
no backtracking parts (spikes). These paths label equivalence classes which allow a rearrangement
of the sum over paths. The basic combinatorial quantities of this construction are given. These
formulae are useful when performing strong-coupling (hopping parameter) expansions of lattice
models. Some applications are described.

1. Introduction

The strong-coupling expansion is a useful analytical technique to study lattice models. In
the context of lattice gauge theories it has been used since the early days of the subject to
investigate the behaviour of the system far from the continuum limit [1]. This technique is
related to the high-temperature expansions of classical statistical mechanics. In the case of
matter fields (continuous spin variables) with nearest-neighbour interactions the technique
involves ahopping parameter expansiagiving rise to a representation of the free energy
and the propagators (correlation functions) in terms of random walks (see [2] and references
therein). In its application to gauge theories the contribution of each random walk includes the
corresponding Wilson loop. Since the early calculations of this type [3] the special behaviour of
backtrackingpaths was recognized. Backtracking occurs when the walk makes two consecutive
opposite steps: the first in one direction and the next one in the reverse direction. Part of
their special character is related to the fact that the expectation value of a Wilson loop is
suppressed like an exponential of its area. At infinitely strong coupling andMatigis leaves

loops which argoure backtrackersActually, for unitary gauge fields the contribution of the
backtracking part of a path is independent of the gauge fields themselves. The problem of
summing over this type of path becomes independent of the expectation value of gauge fields
and is a pure combinatorial problem. The problem was avoided, nevertheless, in some of
the mentioned lattice QCD strong-coupling expansions [3, 4] by setting the Wilson parameter
r equal to 1. This kills backtracking paths from quark propagators. Other strong-coupling
calculations were performed at# 1 by means of the effective potential method [5], in
which the connection to the backtracking-path resummation problem is hidden. The problem
was nevertheless addressed by several authors [6], and led to formulae with which one could
reproduce the effective potential strong-coupling results. Recently, motivated by the strong-
coupling expansion of supersymmetric Yang—Mills theory [7], we fell back into the problem.
Unaware of the previous work on the subjectt, we arrived independently at a derivation of the

T We thank J Smit, A Sokal and GiMster for pointing out to us some of the old papers on the subject.
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main formulae. In this paper we present the result of our investigation. Our paper contains
a mathematically rigorous derivation of some of the previously known formulae, which are
often disperse in the literature. Furthermore, using the same techniques, we derive some new
combinatorial expressions which are useful in different contexts. Some new applications of
the formulae are also presented. We believe that the applications of lattice path resummation
are far from being exhausted. In addition, from the point of view of the combinatorial problem
itself, there are some extensions which are useful in other situations [8] which are yet to be
solved. We hope that our techniques can be a good starting point for attacking these problems.
This paper is written in a self-contained form. In the next section we introduce the basic
notation and definitions. Since there is no standard precise terminology on the subject, we
prefer to define and name all of the basic conceptual notions which are relevant for our work.
Hence, we will refer to random walks #attice pathsand to backtracking parts apikes
Section 2 contains the main results on resummation over pure backtracking parts. Section 3
gives the expression of a matrix generating function for paths without spéss paths This
expression is useful for strong-coupling expansions of lattice gauge theories. In section 4, we
consider some maodifications which are useful when considering closed paths. In this case
the notion of asimplepath turns out to be useful. Formulae similar to those given in the
previous two sections are given for the case of simple paths. Finally, in section 5 we give
a few applications which exemplify the way in which the previous results enter in physical
expressions within strong-coupling expansions. This includes the pure spike contribution to
the free energy of a Gaussian model and the mesonic effective action. This is the only surviving
part if the fields are coupled to a randd/i({N) gauge field at large&v [8]. The reader who
is not interested in proofs can jump directly to the last section. Our main results are given in
formulae (14), (18), (20), (32)—(34), (39)—(41) and (44).

2. Reducing paths

In this section we will introduce the basic notation and definitions. We will be working in
arbitrary spacetime dimensidn Vector indiceg: go from 0 tod — 1. We will need to introduce

an index sef with 2d elements. For every spacetime directiothere are two elementsand

. They correspond to the two senses associated to each direction (forward and backward).
Now consider our spacetime lattice= Z¢. We might associate to any elemerin I a lattice
vectorV («) as follows:

w— V) =eW i —> V() = —eW

wheree") is the unit vector in thgi-direction. Given one elemeate I the elemen& denotes
the oppositely oriented on@ (= w).
Now we proceed to give a few definitions.

Definition 1. A lattice pathof lengthL is an elemeny = (n, @) € £ x I*. The pointt € £
is theorigin of the path, and is thepath sequencespecifying the steps to take to describe the
path.

The endpointof a path(n, a1, ..., a;) is given by the lattice pointn = n + V(a) =
n+ Zle V(e;). We can now introduce the following nomenclature for the set of paths.
Let Sy (n) be the space of all paths with originand lengthL.. S(n) labels the set of all paths
with originn and any length. We might also fix the origin and endpoint and \#it@ — m).

The total number of paths of lengthis easy to countN (L) = (24)%. For lengthL = 0
we will consider that there is a unique path with origimirwhich we will call thepath of zero
length To any pathy = (n, a) of lengthL, there corresponds a path calledréserse patlof
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equal length and labelled™! = (m, ,5). The origin of the reverse path is the endpoint of

the original path and vice versa. The path sequence is the reversely ordergd-eng (;+1).

We will also introduce a path composition operation. Given a path(n, @) whose endpoint

is m, and another path’ = (m, E), we can construct the composed pathy’ = (n, «, E).
Now we will give some more definitions.

Definition 2. A pathy = (n, a1, ..., «;) hasspikesif there exists one integer(l < i <
(L — 1)) such thatw;+1 = &;. In the opposite case one says that the patieiseor hasno
spikes The set of all paths without spikes (terse) of lenfjthnd originz is labelledS; (n)
(S, (n — m) if the endpoint is fixed te).

It is not difficult to obtainN (L): the number of elements &, (n). Its value is 2(2d — 1)1
for L > 1. The path of zero length is ter3g0) = 1.

Now we will classify the set of paths into subsets labelled by a terse path. Let us first
present the results.

e There exists a projection : S(n — m) — S(n — m) C S(n — m) such that to every
pathy it associates a terse patt(y), called itsreduced pathlif the length ofy is L, then
the length ofr (y) is L — 2p, for some integep.

Definition 3. If 7 (y) is the path of length zero, thenis said to be gure spikepath.

The construction ofr(y) proceeds iteratively. If the path = (n, @) is terse, then
7 (y) = y. Otherwise, one can start to scan the sequence of indinéscreasing order, until
one finds a value afsuch thaty;+1 = «;. This by hypothesis must hold for someThen, one
can eliminate the elementsandi + 1 from the sequence, thus defining a new path of length
L — 2. Then, one can apply the procedure once again to the resulting path. In this way, one
must proceed iteratively until the iteration terminates. This must necessarily happen since the
length of the original patfh is finite. The iteration can terminate in two ways. Most frequently,
one would reach, at some stage of the iterative procedure, a path without spikes. Then this is
preciselyz (y). In some cases, the iteration proceeds until there are no more elements left in
the sequenceé. In this case we would say that the corresponding reduced path is the path of
zero length ang is a pure spike.

The setst~%(p) will play an important role in our construction. Our main interest is to
determine the number$(y, p): the number of paths of lengthp2+ L whose reduced path is
7 (whose length i€). For the construction we will need to introduce two groups of operations
on the sets of paths:

¢ 8S(n) — Sp-1(n) (1)
suchthatfory = (n, a1, ...,ar), we havep(y) = (n, ag, ..., a;_1),
¢o : Sp(n) —> Spa(n). (2)
Fory = (n,ai,...,ay) anda € I, we havep, (y) = (n, aq, ..., ar, ).
What we need to know is what is the interplay between these operations and the projection
7. Letus consider apath = (n, o1, . .., or) whose reduced pathis(y) = (n, 1, ..., Bi)-

We are interested in the reduced patty,(y)). By the iterative definition ofr, we see
that after some iterations we would end up with a patlir(y)). Now there can be two
cases: ife # B; this path is terse and hengdg,(y)) = (n, p1, ..., Bi, @) = ¢ (T (Y));

for the special cas& = pB;, one must still apply one reduction step and the result is
(g (v) = (n, B1, ..., Bi_1) = ¢ ().



1020 A Gonalez-Arroyo

Now we studyn(¢(y)). There are again two cases: df, = g; the result is
n, B1,....Bi_1) = ¢@(y)); in the rest of the cases we have, B, ..., B, @) =
¢a, ((y)). These results can be proven in a similar way agfor

Now we will make use of the previous results. Consider a tersejpathn, g1, ..., B;)
of non-zero lengthL, and consider the sél(7, p) of all pathsy of lengthL = L + 2p, with
p > 1 aninteger, whose reduced patlyisThen we can conclude:

e The applicationp induces a mapping froifi(y, p) into S(¢(¥), p) Uaxp;, S(@a(P), p —
1), which is bijective.
e Henceforth, the number of path&(y, p) in S(y, p) satisfies

N@.p)=N@@).p)+ Y N@ga(@).p—1).
aFfi

Actually, the numbeN (7, p) does not depend on the pathout only on its lengti.. We
thus conclude

N(L,p)=N(L—-1,p)+@d—-1HNL+1,p—1). ()

e For a pure spike pathn, a4, ..., ar), we might apply and produce a path of length
L — 1 with reduced pathin, ;). This is also bijective and leads to

The proof of the previous statements is as follows. The bijectivity can be shown by the
existence of an inverse transformation. This is basicallyith « chosen appropriately. To
prove thatN (y, p) only depends on the length can be done by induction. Prove directly by
construction that the statement is true for paths of short length (it is easy to solve the problem
up to L = 4, for example). Then one assumes that the statement is verified up to length
L = L + 2p (for any p). Then one can use formulae (3) and (4) to show that the statement is
true for paths of lengtli + 1. Notice that if the right-hand side does not depend on the actual
terse paths but only on its lengths, and since these lengths only depend on the length of the
reduced pathy of the left-hand side, the result follows.

By repeated application of the relations equation (3) and (4), together with the initial
conditionN (L, 0) = 1, one can obtain all th& (L, p) values. To exploit these relations we
will introduce the following generating functions:

F(L,z)=Y) 2"N(L,p) Q)
p=0

G(y.2) =Y F(L.2)y" (6)
L=0

Multiplying relation (3) by the appropriate powerszéndy and summing ovep andL, one
finds

2d — 1
G(y,z) —F(0,2) = yG(y,2) + %(G(y, 2) —F(0,2) —yF(1,2) (7)

and from it, one can writ& in terms ofF':

- 1 v 2d — 1
G(“)‘(y(l—y)—(zcz—1>z><<2d & 1)Z>F(°’Z)+y i > (®)

Notice that the zeros of the denominator in the previous expression can give rise to singularities,
even for small values afandy, unless the numerator vanishes at these zeros. This mustactually
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happen sinc& and F can be shown to be analytic in a neighbourhood of z = 0 (this
follows from N (L, p) < (2d)~*?7). This allows one to determing(0, z):

2d —1 1
d 1+[d/(d—-DVI—42d -1z

Now plugging this expression into (8) we obtain the formuladay, z).
The expressions can be simplified with a suitable change of variables. Let us introduce

F(0,z) = ()]

the variables:

£(2)=3(1-1-4@2d - 1z) (10)
with inverse

_E1-8)

(@) =5 —- (11)

Then one can conclude:
1
F(,z(8)) = 1 2de/(2d — 1) (12)
2d —1)(1— 1
Gy, 28y = — 24— DA —5) (13)

2d —1—2dt y+&—-1

Notice that the only dependence orsits in the last denominator. It is now fairly simple to

obtain F (L, z) by picking the relevant power of in the expansion. One finds
1

(1—(2d/(2d - 1))§) (1 - &)L

The last formula is the main one of this section. From it one can obtain the nuMbEry),
by differentiation or Cauchy integration. This we will do later.

Before that, as a check of our formulae, one can compute the number of paths ofllength
as a sum over the number of terse paths times the number of paths of lehgtiing a given
terse path as a reduced path:

F(L,z(§)) = (14)

(/2]
d)E = N(L) = Z N(L —2p)N(L — 2p, p). (15)
p=0

To check all formulae at the same time we can multiply the expressiah Bypd sum oveL.
We obtain

1 < L ;
= F(0,z%) + LE(L, z52d2d — 1)t
o = FO.2) ;z (L, 2%)2d(2d — 1)

_ 1 (1 N 2dz )
(1 (2d/(2d — 1))E(z2)) 1-£(z2) —(2d — 1)z

_ 1-£(%) +2 (16)
(1—(2d/(2d = 1))E(z2)(1 — §(z?) — (2d — 1)z)
For the second identity of the previous formula we have resummed a geometric series.
Finally, to prove that the right-hand side of the previous equation coincides with the left-
hand side, one must simply manipulate algebraically the expression and use the relation
EEHA— &) = (2d — D22
We conclude this section by extracting the numh®xd., p) themselves. This can be

done by employing the expression of the generating function (14), and making a contour
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integral in the complex plane afaround the origin, and using Cauchy'’s theorem. It is more
practical to change variables fromio £ in the integral. Notice that fofz| small enough, the
contour in& also encircles the origin and the functiéi{L, z(¢)) has no singularities inside.
The resulting integrand is a product of negative powers and of (1 — &), times the factor
1/(1 — (2d¢/(2d — 1))) coming from (14). If one expands this denominator in powers, of
it is not hard to show that
. ; _L+2p—j-D! :
— J Y +

N(L, p) =0(2d) (2d —-1) = DL+ p) (L+)). 17)
We see that the resulting expression is a polynomidlohdegreep. To obtain the coefficients
ofthe different powers af, one could expand the power@ —1) in powers ot/ and rearrange
the summation. The method can be carried out but is fairly lengthy and complicated. A short
cut to arrive at the same final expression is to multiply and divide equation (17) Gyhen
one replaces the factord and (L + 2p — j — 1)! by their standard integral representation
(that of Euler’'s gamma function) and performs the sum gvefhe expression is then given
as a double integral over two variablesind 8 going from 0 toco. Now one can perform the
standard trick in computing Feynman integrals by changing variablesstdx + 8) and the
Feynman parameter = «/)\. The integration ovek can be performed and we arrive at

J

L+2p 1 A )
N(L,P)= P /dex p (Zd—x)l’ (L(Zd_x)+2dp(l—x))
_(Lr\ @ hr (e s
_< P );mﬁ)(“w) (18)

The first equality in the previous expression is a Feynman parameter integral representation of
the numbersV(L, p). The second one is a representation as a polynomialamd it can be
obtained easily from the other. We have given the expressioN {dr, p) for completeness,
though in actual applications it is more useful to work with the generating funéti@n z).

3. Summing over reduced paths

In this section we will compute a matrix generating function for the set of terse gaths.

This generating function turns out to be useful in applications to strong-coupling expansions
of lattice models. Let us introduce a collection of matricgsfor « € I. The interesting
quantity to study is

T(A):i Z Ay ... Ay, (19)

L=0 (n,a)eS.(n)

We will first compute7 (A) for matricesA satisfyingA,A; = AI (i.e. a multiple of the
identity). This condition is satisfied in some of the most important applications of the formula.
At the end of the section we will give the more general formulae.

To facilitate the reading of the following for those who are mostly interested in the result,
we will begin by giving the answer:

T(A) =@A—1)A+@2d—Dr— At (20)
with
A=) A (21)

ael
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The conditions on the matricesfor which the previous expression applies can be read out from
it. The eigenvalues ok must be small enough for the inverse matrix entering in equation (20)
to exist. In the following paragraphs we will give the proof of this result.

We begin by considering the set of all terse paths, with origin,itength. > 1 and
ending with stepe: S¢(n). Applying a similar definition to equation (19) to this set we obtain

T.(L.A)= Y Ay A, (22)
yeSt(n)

Now, clearly the pathp (y) is also a terse path and has lengthk- 1, but it cannot end with
stepa. Hence,

T, (L +1, A):ZT,g,(L,A)Aa. (23)
B#a

The formula is valid for. > 1.
Now from it we will derive an equation fo7, (A) = 77, 7,(L, A). Then our main
quantity7 (A) is given byI + 3", 7,(A). Summing equation (23) ovér one obtains

1.(A) = (T(A) — Ta(A)) Aa. (24)

GivenT (A), these are coupled equations for the indieesnda. We then write them as a
single vector equation:

(74(A), 73(A)H = T(A) (Ao, Aa) (25)
whereM is an invertible matrix. This matrix and its inverse are given by the formulae
I A;
y— ( ) (26)
A, I
1 I —As
H L= . 27
(1—A)(—Aa I ) 7)
Then, for fixed7 (A), one can solve fof,(A), obtaining
_T(A)
T.(A) = a—n (Ag — A). (28)
Finally, summing both sides of the equation owewe find
_TA)
TA) —1= T (A —2d)). (29)

From this equation one can solve fbfA) obtaining equation (20).

We can now, as in the previous section, check the formula by using it in deriving a known
result. Consider the sum over all paths= (1, @) of the ordered product of the matricds,.
Since this is a geometric series it is easily resummed to A)~1. Now this result has to be
reobtained by splitting the sum over paths into a sum over terse paths and a sum over paths
whose reduced path is a given terse path. In this way one is making use of the results of the last
section and of this section at the same time. The last summation can be performed in terms of
the generating function studied in the last section. One has

3 Ay, - Ay, F(L, A). (30)
Y Aw A

L=0 (n,a)eS,(n)
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Now, given the form ofF'(L, A) given in expression (14), one recognizes the structure given
in equation (19) withA,, rescaled. We find

1
(11— (2d/(2d — )&M)

Now using our expression faF (A) (equation (20)) and the relation betwegfi.) and A
(equation (10)) one obtains the known result.

Now, as announced at the beginning of the section we will give the result without imposing
the conditionA, A; = AI. Itis not difficult by following the same steps as before to show
that in the general case we have

T(A/(1=EM)). (31)

TA)=1-B" (32)

To(A) = T(A) (Ag — AgAy) (I — AgAy) ™" (33)
where

B=Y (A, — AzA) (I - AzA) . (34)

The previously given formula (20) follows as a special case from this one.

To conclude this section, we comment that, using the above formulae, one can derive
matrix generating functions for the sum of terse paths with fixed origin and endpoint. For that
purpose one simply has to multiply, by a phase'é . For the reverse directiahone has the
complex conjugate phasei{ = —¢,), so that the conditiom, A; = AT is respected. With a
suitable integration over the phasggsone can restrict the sum over terse paths to those having
a fixed endpoint. For example, if one wants to evaluate the contributi@i{4) from paths
whose origin is: and endpoint ig2 one can simply write

2n
H(/ dﬂ ew”(n“_m“)>7'(ei(p“Aa)- (35)
0o 27

j2

4. Closed and simple paths

In this section we will look at closed paths: a path such that its origin and endpoint coincide.
One frequently encounters situations in which closed paths play an important role, such as in
computing the free energy or the fermion determinant. In those cases, for every such path one
has to evaluate a trace. For that purpose, the notion of terse paths is somehow insufficient. We
would like to single out those patlis, o) for which the last step; differs froma;. We will

call those paths simple. Let us now give the definition more precisely.

Definition 4. A pathy = (n, @) of lengthL is simple if it is terse (without spikes) and in
addition one has; # @;.

Simple paths can be open or closed, however, their usefulness appears normally when they are
closed. The set of simple paths of lendttand origin inz is labelledS; (n). The setSy(n) is
given by the path of zero length.

By a similar procedure to the one followed in section 1, one can associate to any path
y a given simple pathr (y). To constructT (y) one starts by obtaining the reduced path
(T(y) =79 = (n, B)) associated tg. Let us consider that its length isand its origin isz. If
this terse path is simple, then this is precisgly). If not, it is due tog; being equal tg5;.
Hence, we eliminate the first and last steps in the sequgh@n(3,). The resulting path is
terse and has length — 2. Notice, however, that its origin is now+ V (81), and notn. If
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the path is simple, then it coincides witt{y ), otherwise one has to repeat the procedure once

more. Eventually, one reaches a simple path, which could be just a path of zero length.
Our first goal is to develop similar counting rules for simple paths to those obtained in

section 2 for terse paths. In particular, we are interested in computing the numgerg):

the number of pathg of length/ + 2p whose associated simple pathtigy) = y (of length

). The generating function of these numbers is

o0

F(7.20)=> "N, p). (36)
p=0

In what follows we will compute this generating function and the num&(n“s, D).

The procedure that we willemploy is to relate these numbersMithp). Forthat purpose
consider a pathly with 7(y) = y = (m, @) and consider its reduced pattiy) = (n, B).
It is clear from the description of the constructionsofy) that the pathr(y) must be the
composition of three paths:

n(y)=soyos L
The paths = (n, p) is a terse path of length’ (0 < p’ < p) going fromn to m. If the path
7 has length thenp, # &, o;. This must hold, since the compositior 7 o s~ must be
terse. Conversely all pathshavingz(y) = s o 7 o s~! havey as its associated simple path.
Hence, all one needs to do is to count for each casgpj the number of pathg of length
[ + 2p. The main formula is

~ p ’
NG, p)=NUp)+Y NU+2p,p—p)@d—2)2d -’ (37)
p=1

The quantity(2d — 2)(2d — 1)”' 1 counts the number of acceptable terse pathglength
p’ going from any point to m. The word acceptable refers to the conditign # a1, «;.
The previous formula (37) is valid fdrand p strictly positive. If any of the two is zero then
N = N.

A first conclusion from formula (37) is thaﬁ()?, p) only depends on the lengthof the
simple pathy. If we multiply both sides of the equation kY and sum ovep, we find (for
[ >0)

Fl.,o)=F(.2)+ ) (2d —2)(2d — )" 27" (38)
p'=1

Now using the form of' (I, z) one obtains

1 1
1-26(2) (1—&()F

This formula is valid for > 0. This is complemented bg?(O, z) = F(0, z). To extract from

F(l, z) the numbersv (/, p), one proceeds as before by Cauchy integration. The calculation is
now much simpler sincél — 2£(z)) is up to a constant the Jacobian for the change of variables
from z to £. Finally, one obtainsi(> 0)

f(l,z) =

(39)

- (@ —1r@p+D)
NP ==

(40)
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In some applications, one is interested in a slight variant of the generating fulctian.
Its definition and final expression is given by

~ 0 1 ~ 1
F(Z,Z)Z;EN(Z,p)szm. 41)

The last expression, valid for positivecould be obtained after some work by integration of
F(,z). The ﬁ in the definition of F’ occurs naturally when the sum of closed paths is
the result of a fermionic or bosonic determinant. We complement this result with the one for

[ =0:

~ <1 2d
F0,7)= X; 3, VO P =dlogd =)+ — 1) Iog<1 ~ 57 15(z)>. (42)
p=

The remaining part of this section is dedicated to the evaluation of sums over simple paths.
The basic quantity is

:?<A)=i o A Ay (43)

L=0 (n,&)eS; (n)

whereS; (n) is the set of all simple paths with origininand lengthi. In short, what we want

is the generalization of the quantity defined in equation (19) but restricted to simple closed
paths. Similarly to what we did in section 3, we will first present the result, and then give the
derivation. We obtain

~ _ 1 2 i
T(A) = m(Zk(d —D+A+222d — ))H - Y A, HA;) (44)

ael
with
H=1+@2d—1r— A" (45)

whereA, A; = AI as in section 3.
The derivation follows a similar track to the one employed#@rd). Our first goal is the
calculation of the quantit{,. (L, A) given by

Tow (LAY = Y Ag Ay (46)

(nﬂ)egz""’ (n)

whereS¢® (n) is the set of all simple path@&, @) of lengthL (L > 2) and origin iz such that
o1 =« ande;, = «’. The main iteration equation allowing the evaluation of this quantity is

Tw(L+2,.A)= Y ATpp(L, A)Ay. (47)
a#Bia/ AP

The sum of7,, (L, A) over L ranging from 2 tooco is denoted by7,, (A). An equation
for this quantity follows from summing both sides of equation (47) averAfter similar
manipulations as those of section 3, one finds

,Zm’ (A) = Aa%&’(A)Aa’ + Sotoz’ (48)
with
Soer = —Sagh + ASuw Ay + (L + 1) Ay HAy + A(HA, + A H)
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whereH is the quantity defined in equation (45). Finally, combining the equatiof,fo(A)
and forZ;3 (A), one can solve fo¥,, (A):

,Zxot’ (A) = (1 )\’) ()\(_Sa&’ + (Saa’Aa - HAD/ - AotH) + AaHAD/ + )LZH) (49)
The previous quantity can be reIatedff()A) as follows:
T(A)=I+A+) Tu(A). (50)
ata

Using this result in combination with equation (49) one obtains the final formula (44). One
can again check the validity of the expression by using it in reobtaining a known result. We
leave this to the reader. We recall that in the definitiorv¢fA) one sums over all simple

paths, closed or open. Restricting oneself to closed paths can be done with the same technique
explained at the end of the previous section.

5. Discussion

In this section we will exemplify how to apply the previous results to some physical problems.
We consider a lattice model involving continuous spin variables with nearest-neighbour
interactions. These lattice fields can be real or complex valued or Grassman variables if they
describe fermions. To apply the path representation we need a quadratic action or Hamiltonian
in these fields. For example, for complex fields one has

> ¢ m) M (n. m). (51)

a,b,n,m

The indicesn, m label lattice points and the indices b are internal. The matrix/ will

depend on other fields. For instance, in many cases constraints or non-quadratic terms in the
lattice action can be rewritten as a quadratic (Gaussian) Hamiltonian with the aid of auxiliary
fields. Then, one can integrate out these complex figltig:§) using the Gaussian integration
formulae. The two quantities entering the final expressions are the determindnidet /)

and the inverse o#7. Now, the nearest-neighbour character of our matrix manifests itself in
that we can write (after an adequate rescaling of the fields if necessary)

M=I-Y A, (52)

ael

where the matriA, can be written as
Agb(", m) = Agb (}’l) 8mn+V(a)~ (53)

It only produces transitions between a lattice peirdnd its neighbour in the direction

n+V (a). Itisthis form of the matrix\/ that allows a random walk (lattice path) representation

of the determinant or the inverse &f. Our formulae allow a rearrangement of this sum over
paths into a sum over simple closed paths or terse paths, respectively. This is feasible whenever

AgAy = A (54)

with A a matrix which is independent of the spacetime point. This occurs naturally whenever
the matrixA,, although dependent on the spacetime point, involves unitary link fields as in
U(N) or Zy gauge theories. We will restrict to the case wheis a multiple of the identity

AL
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Now if we denote byA(y) the ordered product of the matricds, () along the pathy,

we can write
log(det(M))/V = (—d log(l—&A)+(d—1) Iog(l — 2d2d_ 1§(A))) Tr(I)
Tr(A(y))
+ 55
Z yesgﬁn) (1 - é:)] ( )

whereV is the lattice volume ané(%) is defined in equation (10). To arrive at the previous
equation, we have rearranged as usual the sum over paths into a sum over simple paths, and
used the results of the previous sections. The term proportionak 19, qual toF’ (0, 1),
gives the contribution of pure spike paths. In some theories,Uik¥) gauge theories at
strong coupling in the larg®* limit with either bosonic or fermionic spin fields in either the
fundamental or adjoint representation, this term turns out to be the only surviving one [8].
Thus, up to a multiplicative constant depending on the type of fiélfD, A) (equation (42))
gives the free energy per unit volume in that limit. We suggest that in other theories, the
rearrangement into simple paths could be an effective method to perform the summation over
paths.

Now as an additional application, let us compute the pure spike contributionrteetbanic
effective potentialLet us add to the action (51) a mesonic source term:

=2 P’ m) I ) (56)
n,a,b

whereJ (n) acts as the source of local field bilinears (mesons). Integrating over the Gaussian
fields¢ we obtain the connected generating functiowal/):

=1
W) =10g(Z(1)/Z(©O) = Y _ L Tr(M 1)) (57)
k=1

where the trace includes a summation over lattice points. Each fackrbtan be expanded

into a sum over paths (random walks). The pure spike contribt¥ig() is that in which the
overall path obtained within each trace is a pure spike path. Again this contribution would be
the leading one if the matrice4, (n) entering equation (51) involve randoti(N) fields at
largeN. In the subsequent expressions only the remaining part cAtheould enter, which

we will take to be constant in what follows. In order to implement the restriction to pure spike
paths, it is convenient to express the propagatérd as a sum over terse paths:

A\ \ab
(M0, m))™ = 1 Z Z AmNe _ (58)

(11— (2d/(2d — 1))§) 4= e omam) (1—§)1
We then obtain foWy(J):
Wo(J) = Z > > X
X1, Xk €L PreS(x1—xz) PreS (x—x1)
X Tr(J' (x)A' (P J ' (x2) - A" (%)) O(Pro Po... 0 k) (59)

where® (y) is 1if y is a pure spike path and zero otherwise, and the rescaled quaAtitiés
are given by
’ Aa
A, =—"—
1-&@)
J(n)

J’ = . 61
" = T @aj@d = 1)E0) (61)

(60)
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We see that the net effect of replacing the sum over paths by a sum over terse paths is precisely
this rescaling, as follows from our results of section 2. The first two ternig,0¥) are

Wo(/) =D Tr('c)+3 Y T )Py — 27 (x2) +-- . (62)
xel x1,x026L
The linear term inJ’ is trivial since the only path that contributes is the path of zero length.
The constrain® (7, o y,) for the quadratic term implies th@ must be the reverse path2f.
The resummation over terse paths can be done with the use of the formulae of section 3. One
obtains the following explicit expression of the propagatdr; — x2):

2
P(x1 — xp) = ]‘[( / des e‘%<X1—XZ>u> 1-2)A-@d-—1) —B)*! (63)
“ 0 27T
where
)\‘2

N=— 64
L-&m)* 64
B=) €"A,® A} (65)

ael
These expressions were used in our recent papeN og 1 SUSY Yang—Mills [7]. In
formula (62)J'(n) has to be looked at as a column vector on which the m@tracts. Then,
7/()(1) is the row vector whose elements are the transpogé. of
Finally, we will address the calculation of the cubic termi¥g(J). For that purpose we
have to solve the constraifi(y;, o 7, o y3). In the generic case, this can be solved as follows:

pr=sgo(sh) (66)
Vo = sg o (s{)_l (67)
Pa=s7 o (s3) " (68)

wheres] € S” is a terse path ending with a step in thelirection, and similar definitions for
s2 andsz. Furthermore, one must hawe# 8 # vy # «. The exceptional cases occur when
any of the paths; is a path of zero length. It is clear that the summation over the patam
be done with the aid of the formulae of section 3. The best way to express the result is in terms
of the mean mesonic field?? (x):
O(x) =Y Plx - x)J (). (69)
x'el

Then the cubic term ifVo(J) becomes

> (% Tr(@%(x) = Y Tr(@@)D2(x)) — 2 Tr(Dp(x) 3 (x))

xeLl acl a#p
= Tr(%(x)%(x)%(x))) (70)
aFpFyFa
where
Dy (x) = ﬁ(A;CD(x + V()AL — 1O (x)). (72)

This coincides up to a normalization factor with the cubic term in the effective aCtoh),
which is the Legendre transform &y(J/). Following a similar procedure one can compute
quartic and higher terms ifig(®).
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